Квадратичные формы и матрицы (Ефимов) 1967 год - старые учебники
Скачать Советский учебник
Назначение: Допущено Министерством высшего и среднего специального образования РСФСР в качестве учебного пособия для высших учебных заведений
Эта книга является дополнением нашего «Краткого курса аналитической геометрии».
© "НАУКА" ГЛАВНАЯ РЕДАКЦИЯ ФИЗИКО-МАТЕМАТИЧЕСКОЙ ЛИТЕРАТУРЫ МОСКВА 1967
Авторство: Ефимов Н.В.
Формат: DjVu Размер файла: 3.27 MB
СОДЕРЖАНИЕ
Предисловие.
Глава I. Общая теория линий второго порядка.
§1. Преобразование координат на плоскости.
§2. Приведение к каноническому виду уравнения линии второго порядка с центром в начале координат.
§3. Инварианты и классификация квадратичных форм от двух аргументов.
§4. Приведение к каноническому виду общего уравнения линии второго порядка.
§5. Уравнения центра. Признак вырождения линии второго порядка. Примеры.
Глава II. Общая теория поверхностей второго порядка.
§6. Преобразование декартовых прямоугольных координат в пространстве.
§7. Некоторые общие выводы, основанные на формулах преобразования координат.
§8. Приведение к каноническому виду уравнения поверхности второго порядка с центром в начале координат.
§9. Инварианты и классификация квадратичных форм от трех аргументов
§10. Приведение к каноническому виду общего уравнения поверхности второго порядка.
§11. Уравнения центра. Признак вырождения поверхности второго порядка. Примеры.
Глава III. Линейные преобразования и матрицы.
§12. Линейные преобразования на плоскости.
§13. Произведение линейных преобразований на плоскости и произведение квадратных матриц второго порядка. Сложение матриц. Умножение матрицы на число.
§14. Теорема об определителе произведения двух матриц
§15. Геометрический смысл определителя линейного преобразования. Вырожденные преобразования.
§16. Обращение линейного преобразования на плоскости.
§17. Преобразование координат векторов при переходе к новому базису.
§18. Изменение матрицы линейного преобразования на плоскости при переходе к новому базису.
§19. Матричная запись системы двух линейных уравнений.
§20. Линейное преобразование в пространстве и квадратные матрицы третьего порядка.
§21. Собственные векторы линейного преобразования
§22. Характеристическое уравнение матрицы линейного преобразования.
§23. Симметрические линейные преобразования. Приведение к диагональному виду матрицы симметрического преобразования на плоскости.
§24. Приведение к диагональному виду матрицы симметрического линейного преобразования в пространстве.
§25. Приведение к каноническому виду квадратичной формы. Приложения в теории линий и поверхностей второго порядка.
Скачать бесплатный учебник СССР - Квадратичные формы и матрицы (Ефимов) 1967 года
СКАЧАТЬ DjVu
ПРЕДИСЛОВИЕ
Книга состоит из трех глав. Первая глава посвящена приведению к каноническому виду общего уравнения линии второго порядка. Изложение этой главы построено преимущественно в алгебраическом плане. Векторное исчисление в этой главе не употребляется (используется только понятие вектора как направленного отрезка и проекции вектора на оси координат). Решение основной задачи общей теории линий второго порядка изложено с расчетом, чтобы метод непосредственно обобщался по размерности. Таким образом, сущность дела в полной мере разъясняется на двумерном случае. Соответственно этому вторая глава, посвященная приведению к каноническому виду общего уравнения поверхности второго порядка, по своей схеме совершенно аналогична первой.
Третья глава имеет своим предметом линейные преобразования и матрицы. И здесь основные вопросы прежде всего излагаются в двумерном случае с последующим обобщением на трехмерное пространство. В конце главы рассматривается приведение к каноническому виду квадратичных форм и устанавливается связь этого вопроса с теорией линий и поверхностей второго порядка. Третья глава написана соответственно требованиям по элементам линейной алгебры новой программы курса математики высших технических учебных заведений. Изложение последней главы не зависит от двух первых глав.
//. Ефимов
Автор-учебника - Ефимов Н.В., ★ВСЕ➙ДЛЯ ВУЗОВ-ТЕХНИКУМОВ, Серия - Избранные главы высшей математики для инженеров и студентов втузов, Геометрия - ДЛЯ ВУЗОВ-ТЕХНИКУМОВ